

Tin Whisker Investigation of SnPb Plated Parts with Marginal Pb Content

Anduin E. Touw 11/17/08

- Barrel plated finishes have greater variability between surfaces and less homogeneity within a surface than dipped finishes
- Lack of homogeneity can lead to XRF results showing finish as acceptable but SEM EDS showing the finish as a failure
- Our results show that the lack of homogeneity can pose a tin whisker risk, at least for small spacing distances
- Our results also show that changes in environments can restart whisker growth, even after 10 years of storage

- Boeing S&IS has a "no tin" policy: >3% Pb required in all Sn-based finishes
- Incoming inspection performed on every lot
 - XRF used for mechanical parts and parts without DPA requirements
 - SEM EDS used for electronic parts with DPA requirements
- XRF and SEM EDS are both accepted techniques for material identification but can produce different results
 - EDS looks at an area but is almost all at surface
 - XRF looks at an volume going below the surface
 - If Pb is not homogeneous in material, the two methods results may differ
 - EDS is considered preferable by Boeing

Case of Interest

Space & Intelligence Systems | Component Engineering

- Diodes were barrel plated
 - Barrel plating inherently has less homogeneity of Pb than does solder dipping
- XRF results from supplier showed >3% Pb
- EDS results at Boeing showed <3% Pb (sometimes virtually no Pb)</p>
- Concern about whether parts represented a tin whisker risk

Inspection of Inventory

Space & Intelligence Systems | Component Engineering

History with supplier meant we had many lots of parts with similar plating

- Some inventory had already been stored for as much as 10 years
- Varying XRF and EDS readings of 0% to 2% Pb content
- >200 parts inspected and one part (10 years old) was found to have 3 whiskers
 - Longest whisker was about 20 microns, or about 0.8 mils.
 - Per industry standard JESD22A121, this is long enough to constitute a whisker (min 10 microns for whisker)
 - Not long enough to pose a reliability risk

Pictures of As-Stored Whisker

Space & Intelligence Systems | Component Engineering

5.0kV 5L

Other Sprouts

Longest Whisker 0.8 mils

Whisker Growth Experiment

Space & Intelligence Systems | Component Engineering

- Although observed whisker was not long enough to pose a reliability risk, it was unclear whether the growth had saturated
 - In general, whisker growth is expected to saturate
 - Since part had been in stores for 10 years, whiskers might be as long as they were ever going to get
 - Other old parts might never grow whiskers
- Took 100 diodes with varying Pb-content and performed steady state growth experiment based on JESD201 and JESD22A121
 - 57°C, no increase in humidity since space parts will not be in high humidity environment in the field
 - Inspections at 500, 1000, and 5000 hours
- Results: whiskers were observed to grow during experiment but most were short

Experimental Results

Space & Intelligence Systems | Component Engineering

	500 hrs	1000 hrs	5000 hrs
Part Z	0.15, 0.2, 0.3, 0.3, 0.5, 0.8 (original whisker)	0.5, 0.5, 0.7, 0.75, 0.8, 1 New whiskers: 0.4, 0.2	0.5, 0.5, 0.7, 0.75, 0.8, 1.7, 0.4, 0.4
Part C	No whiskers	0.3, 0.4, 0.4	0.4, 0.4, 0.4, 0.2
Part D	No whiskers	No whiskers	0.2, 0.2, 0.4, 0.4
Part A	No whiskers	0.7	0.9

Modeling Growth

Space & Intelligence Systems | Component Engineering

Two important aspects to whisker length assessment:

- Distribution of whisker lengths at a given point in time
- Changes in length over time (growth rate)
- Neither of these aspects is well understood nor do well established models exist

Our experiment

- Looked at a sample of parts to try to understand distribution of lengths
- Took measurements over time to get a sense of growth rate
- We compared both of these sets of results to work done by CALCE and ESA

Log-Normal Fits of the Data

Space & Intelligence Systems | Component Engineering

Se there

Confidence Bounds on Lengths at 5000 hours

Space & Intelligence Systems | Component Engineering

	Median Length	75% Lengths	90% Lengths	95% Lengths	99% Lengths
60% confidence	0.77	1.03	1.35	1.58	2.15
90% confidence	0.86	1.18	1.62	1.96	2.83

- 10 miles

Distributional Results Compared to Literature

Space & Intelligence Systems | Component Engineering

Our Results:

- 500 hours: Mean: 0.38 mils; SD: 0.27
- 1000 hours (1.5 months): Mean: 0.56 mils, SD: 0.27
- 5000 hours (7 months): Mean: 0.58 mils, SD: 0.50

Fang / CALCE Results (bright tin over brass coupons):

- 8 months: Mean: 0.94 mils; SD: 0.5
- 13 months: Mean: 1.01 mils; SD: 0.45
- 18 months: Mean: 1.02 mils; SD: 0.45

Dunn Results (Bright tin over steel with copper barrier)

- 1 month: max: 4 mils
- 2 months: max: 9 mils
- 5 months: max 12 mils
- 22 months: max 24 mils
- 200 months (15 years): max: 39 mils
- Note that Dunn's bright tin over brass data shows >50x increase between 1 month and 15 years

Models from the literature predict longer whiskers than we observed.

Boeing Variation of CALCE model is more conservative in long term

Predicted Lengths at EOLSpace & Intelligence Systems | Component Engineering

Looking at any of the models, 3x growth between end of experiment and EOL would be conservative

	Median Length	75% Lengths	90% Lengths	95% Lengths	99% Lengths
Point Estimate	2.25	3.01	3.91	4.57	6.12
60% Conf	2.31	3.10	4.05	4.76	6.46
90% Conf	2.57	3.55	4.85	5.88	8.50

Conclusions

Space & Intelligence Systems | Component Engineering

Specific to Parts Tested:

• There is a very low chance of long whiskers on these parts, even after close to 10 years of storage and 15 years of life

General Conclusions

- Though it has been suggested that >1% Pb is enough to prevent whisker growth, it is possible to have whiskers with 1.5% Pb per EDS.
 - This may be due to the lack of homogeneity of the Pb in the finish for barrel plated parts.
 - These parts would have passed XRF testing (>3% Pb)
- Even when under normal storage conditions, which has been shown to produce whiskers, whisker growth may not be saturated after 10 years.
- It may be possible to restart whisker growth under different conditions, suggesting that simply inspecting a large sample of parts before use may not be an adequate tin whisker risk reduction effort.